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Consider the differential equation (l)'i = f(x) in a. Banach space and iet
x* be an equilibrium. The basic question treated is the following! if x* 1§
asymptotically s?able_and if (2) Xel = X * h@(xk,h) is a one-step method, with
fixed step size h, for integrating (l), then does the sequence X, ~converge to
¥*

x7? It is shown that uniform asymptotic stability of (1) implies stability of (2)

and that exponential asymptotic stability of (1) implies asymptotic stability of (2)
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Abstract

Consider the differential equation (1) & = £(x) in a Banach
space a.d lot x* be un equilibriuwm, The baaic quention treated is the
followings 1 x* 1is wsymptotioally stable and if (2) Xeay ™ %
m(xk,h) 1# & one-step method, with fixed atep sise h, for integruting
(1), then doee the sequence X, oonvorge to x*? It is shown that wiiform

sayaptotia stability of (1) implies stability of (2) and that exponential

saymptotlc stability of (1) implles ssymptotic atabil'!'ty of (2).
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1. Introduotion,

Considar the diffarential equation

(2.2) X w £(x)

and let x* be an equilibrium point. The baszic queation to be treated

here is the following: if x* is an asymptotically stable equilibrium end

ir

(1.2) Xy = %y + M%) -

is a one step method, with fixed step size h, for integrating (1.1), then

does X, converge to x* as k tends to infinity? We shall show in
our first main theorem that uniform asymptotic stability of (1.1) implies
stability of (1.2) snd in our second main théorem that exponential asymp-

totic stability of (1.1) implies asymptotic stability of (1.2) (improving

& result of Skalkina [11]).

Our interest in the problem consldered here stemmed from an investi.

gation of iterative methods for solving the equation M(x) = O in e Banach

space, If f£(x) is & function whose zeros include the zeros of F (for
example, £(x) = -(FJ") 'lF(x)), then numerical integration of (1.1) will

lead to iterates % correspcndi.ng' té points x(tk;xo) on the solution

curve, If the initial point X is in a region of attraction of the equi.

libriwmn x*, then under vhet condition does x  converge to x*? Various
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authora have used simller idean to deve:mp algorithms for solving F(x) = 0
({1,2,3,5,107) in partioulsr situetions. For uxample, Boggs ([ 1]) has in-
tegroted the equition & w ~(F})™'F(x) with the A-steble methods of
Dahlquist to generate iterates x  which converge to a root of ¥, In
({2,3,10], Euler and Runge-Kutin integration methods ere used to generate
iterates X, which eventually 1,19 within the reglon of convergence of
Newton's method., Here, resuita are dgvolopgd. for general one step methods,
)

R A | I

e, Uni't‘orm Asymptotic Stabilit Ve

Iet X bea rea.l Banach spanc with norm, |+, and 1et S(r) =

(x| ﬂxll <r) be the ciésed ball of radius r about 0 in X, We let £
be a mapping of X into itself and x¥* be e zero of f. We assume,
'.‘\'

wi‘l.hout loss of general:xty, th&t x* = 0, Now, suppose that £ i3 étpfinéd

on the ball "'8(R) and that @(x,h) 1« e mapping of S(R) x [0, hy] into

X. We assume throughout the sequel tha.t the following conditions are sat. ‘"

lafied:

(2.1) there are positive constants L and L' such that [ £(x)-£(y)|l <
Yx-yll and |lo(x,b)-2(y,n)]| < L'fx-y] for a1l x,y €£(R) and

0<h < LRy
(2.2) ¢(x,h) is uniformly continuous on BS(R) X [O,ho];
(2.3) 9(x,0) = £f(x) for all x € S(R); and

(2.%) 2(0) = ¢{0,h) = 0 for ell he€& [0,hy].

,4.5,
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have

We consider the differential agquation

(2.5) x = £(x)

and the one step integration method

(2.9 Koy F W)

\

[le'ote that (2.6) is consistent in view of the esswmption (2.3)]. We now

DEFINITION 2,7. The solution x = O of (2.5) is uniformly stable if, given

€ >0, there is & &(¢) >0 such that "xo” < 8(e) implies that

“x(t;to,xo")“ <e for t3>t, where x(t;to,xo) is the solution of (2.5) -

with ‘,«x(to;to,xo) = Xy The solution x=0 of (2.5) is uniformly esymp.

t‘oticélly stable on & ball S(r) if it is uniformly stable and if, given

€ >0, there is & T(¢) >0 such that ﬂxo“ <r implies that

lx(tsty, %)l < e for t> &, + T(e).
" We note thet since X may be infinite dimensional, uniform esymp-
totic stahility and asymptotic stability are not equivalent ({9]).

We now assume that the solution x =0 of (2.5) is uniformiy
asymptotically stable on the ball S(R) for some R> 0. If 8(¢) and
T(¢) ‘are the functions characterizing the stability of (2.5) as in defini-
tion 2,7, then we may assume that &(-) and T(*) -are strictly monotonic
continuous functions (see [7, . 300]). We also suppose for simplicity that

t

o = 0 and we let x(t,xo) = x(%40,%,). We then have:




LEMMA 2,8, Let x,b be real nunbers such that 0 < r < b < 8(R). Then

there is a t, > 0 such that inf{“x(t;xo)\ﬂ t e [0,4], ¢ < izl <03

RO NEL NS |

is strictly positive,

proof: Since b < 8(R), [[x(%; xo)ll <R and so [x(t;x,) %gll=

-
llf (e(x(s)) -£(xg) Vs + (xR < Lf lx(s) xgllas + tl£x)ll (wnere x(+) =

x( ; o)). It follows from Gronwall's inequal ty and en integration by

. parts *that

(2.9) Ix(8) x| < Tt

Therefore, ||x(t; xo)\l >l xoﬂ (1-Ltem) and we may choose t, >0 such
It -

thet 1 - Ltie = > 0.
Following Massera ([9]), we let a¢(+) be & continuous strictly
increasing function with G(r) < 2r, ¢(0) = 0 and we introduce the

Lyapunov function v(.) for (2.5) given by
(2.20) V(%) = sup(G(||x(£; %) 1|} (2424) 1+8)| £ > O]

for 0 < on\l < p where P = ‘min{1, 8(R)}.

l\)

11 ({91). V(+) has the following properties: (1) allixl) <
Az ll; (11) Vix) V(3 )l < Mlxy-yol for some M >0 (111)

Un 5 | [V(x(k;5%5)) V()1 /% < (|| %) (122l x| /)% and,
g -

(19) VCxtaag)) V) < Wl (eselati g /20 gox

LEMMA

<
-
1A

(%,

~ ~

e

(x
X

n




O AR ST et i

T AR ANkt <

%yl < end x> o0,
Letting V(lIxfl) = G(llxo) (1+22(ll x| /2)}2, we nave:

LEMMA 2,12, If O <r < 5(p) and e >0, then there is a k(r,e) >0

such that
(2.13) V(x(k5x.)) V(x,) < k(¥ x5 +eG(l%4]1))

for 0 <k <k(re), r< "xoil < 8(p).

Proof: Choose t, >0 by lemme 2,8 so that m = inf{[lx(t;x )|[0 <t <t

1 1’

r < leoll < &(p)) >0, Then 0 <m <lx(t;x)l <p for 0<t< t, end
r < %l < 8(e).

Since A(k,0) = [ 1+2k+2r(0)] -2 is uniformly continuous on [0,t;] X
(m/2, /2], there is an n = q(e) such that [A(k,0').-A(0,0)] <e if

1k} + Jo'-o] < 1 Let X(r,e) be the smaller of t, and the unique posi-

1
tive solution of X + %I_.&(p)ke]:'k = 7. Letting o' = “x(k;xo)“ /2 and '
o = [|%,1/2, 1t follows from (2.9) that |o'-0] < [lx(lyx,) x4l /2 <

(L6(p)keLk) /2 and hence, by virtue of lemma 2.11, that V(x(k;xo))-v(xo) <

6(1x A, ") < K{-¥(lix 1) + ea(lix D).

LEMMA 2.14, There is an W > 0 such that, if x(t;xo) and xo+hf(xo) are
elements of S(R) for 0<t<h< hy, then llxo+hf(xo) -x(h;xo)“ <
My -

Proof: Apply Gronwall's inequality.

LRaA 2,15. Let p = min(1,8(R)} and suppoce that o{x,h) is uniformly




continuous on S(p) X [0,hy]. If 0<r< 8(p), then there is en hl(r) >0

_s_uch that

(2.16) Vg iy B)) - Vi) < - 3 w¥(x) <O

whenever 0 <h < hl(r), r < ||x0|\ < &(p).

Prooft Assume without loss of generality that 8(p) < p. Then, if h <
(0-8(p) )/15(p) max(L, L"), x0+hq>(xo,h) and x0+hf(xo) are elements of
s(p). Now, V(x0+m(xo,h))-V(xo) < |V(xg+m(xg,h)) - V(s *nf(x)| +
|v(x0+hf(xo))-v(x(h;x6))\ + V(x(h,-xo)) - V(xo). 1t follows from the pre-
vious lermas, that, for 0 <T < 8(p) end € > O, there is @ k(r,e) >0

gsuch that if
(2.17) 0<h<h*-= min(k(r,e)‘,ho,(p-s<p))/[s(p)max(L,L')l)
then

(2.18)  VixgHn(xg,m) W) < Mol -£ixg)l + 7 x4
- nv(lixgl) + €Gllixn
tor r <%l < &(p).

let a(n) = suplllp(x,n)2(x,0) | <lixdl < 8(p)} and take €
v(r)Akc(d(p))), ([Note that g(x,0) = £(x).] Since ®(x,h) 1is uaiformly
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continuous, c(h) is continuous. Moreover, a(0) = 0. Thus, the equation
a(h) + Nh8(p) = ¥(r)/(LM) has a least positive root h > 0. If 0 < hl(r‘) <

min(h*, h), then it follows that
(2.19) V(xgH0 (%, 1)) - V(%) < - Zhi(r)

for 0 <h< hl(r) and r < l]xoll < 8(p).

‘We can now prove the following:

THEOREM 2.20. Suppose that the solution x =0 of (2,5) is uniformly

asymptotically steble on S(R). Then, for any ¢ > 0, there are h(e) >0

end Kk(e) >0 such that if onll < 6(8(p))/2 and O < h < h(<), then the

solution x  of (2.6) sterting from X, Satisfies the inequalities (1)

llx]Jl <p for all k> 0;.end (ii) “xk“ <e¢ for all k > K(e)/h.

Proof: We may essume that 0 < ¢ < 8(p). Let » = G(e)/4 and let h(e) =
min{hl(r),l/L'} where b (r) 1is given by lemma 2.15. Aleo, let KX(e) = .
2(a(8(p)) -a(r/2}} /¥(zr).

We consider three cases, nemely: (1) 0 <'[xjl <r, (11) r < llxou < 2r,
and, (ii1) 2r <{x | < &(8(p)) /2.

Case (1)s 1If llxkll <r forall k>0, then ||xkl| <G(e)/b<ef2<e for
ell k> 0. On the other hand, if lekﬂ <r for k=~ 0,1,,..,n-1 and
el 2 v, then fixf = I, y+o(x, g, < llx, I (10L) < 2r and ve re-

gard x as an initial point for case (14).




Canc (V1)1 We olanim that \Ix“ll ¢¢ forall k>0, [Note that ¢ «
8p) <o) Clewrly lixgl v 2este, If rg ""k" €¢ for OXLkKn

then Q("x“"illl) ~ V(*ml) “ V(xO) * g“""m) . "("u” < V(wo) .
(n+L)y(a) /0 w V("u) < 2~?||x0!| < by - a(e) by vircue of lemmas 2,11 and 2,39,
Since G ia strietly monotone, "*ml" < ¢ and the olaim is eatablished
by induction,

Thua, oombining cases (i) and (L1), we have shown that if lingll < 2,
then IIx.kll <c¢ Yorall k> O,

Case (1i1): Cleardy [xl < 0(8(n))/2 < 8(p) < p. Buppose that » ¢
n
Izl < 8(p) for X sin. Then, (llxy,,) < Wik y) = Vix) §IV(xN_)-

V(%)) < V(%)) « (nel)h(r) /2 < 2xgll < G(2(p)) by virtue of lemws
2,11 and 2,15, Since G ia strictly nonotone, [|x ..l < 8(p) < » and so,
Ixll <o forald k>0, Furthemcre, if (n+el)h > K(¢), then
Gllxp,qll) S V%)) = K(e)¥(r) /2 < Elxll - K{e)u(x) /2 < A(B(p)) = K(e)¥(x)/R »
G(r/2). Tt follows that llx n+1" < r/2, The theorem then follows from the
first two cases,

We note that the theorem does not assart that the solution X - 0
of (2.6) is stable for fixed h, In other words, we do not claim that
for given h and any € > Q ther‘e ig »n Nw q(c ,h) such that if
||x0|| < N, then llka <e¢ for all k., Rearing this in mind, we consider

the following two.dimensional sysitem:

Ruy - x(x"s ya)

(2,21)

. s 2
yo=x - p(x® o+ y).
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res Viw,y) » u"-:-v“. then H(w(8),y(L)) » L(x"(e) mﬂ(tz))a along 20)u.
tions of (R,21) and a0, the trivial solution is uniformly asymptotioally
stable, If Kuler's method \u applied to (R.F1), Shen the difference ays.
W

L il andi i i il -

Xpe) ¥ty - “n(*:wﬁ)

(2.0) .
Yped ® Yp * W, o by, (xpey)

is cbtained. lab AV(x,Yy) bu given by

- .
(2,23) 4,V (%, ¥} = Rty eyt o Slalloh m)tx'w' . Gy}l )

el i i b i

80 that v(%ﬂ, Yood) * V(xn,yn) " q\v(xn,y“). Using (2,83), it is cany

to verify that the trivial sclution of (2,A2) ias not atadle and that all aolu.
tiuns with 0 < h(a%w:) <l+ (:t,-h')“"a (0 <h €1) are attracted to the
invariant aet x’wﬂ w (1a( 1-ha) 1./&) /.  Although the trivial solution af .
(2,22) iu nnb atable for fixed h, the soluticns of (2,22) oan be wade to
ronoin arbitrarily close %0 nero by initially chooaing h‘ small endugh.

In other words, the theorem asserts that for given ¢ > 0, there is an h(¢)
such that if h < h(e), then the aolutions of (2,22) will lie within the

ball 8(‘) .

5. Exponential Asymptotic Stability.

We now oconsider the case of exponential anymptotic stability.

DRFINITION 3.1, The solution x « ¢ of (2,5) ia exponentially siymptotically
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atable on 8(r) Lf thers are poritive oconntants &, M such that
IR0ty i) € Migle"™®=%0) for Jagl € v and v 2%, Mmierdy, she
solubion %, w0 of (.6) ic exponentislly asymptotically stable if there

ere poaitive constants b, hy, My, A auch that llxkll < Nlllacollc'“h for
81l k%0 whenever 0 < h<hy and [lxll S M.

Skelkina ([ 11)) has shown that if the mero solution of (2,%) ia

exponentially asymptotically atable, then 80 ias the mero solution of (2.6),
We shall ahortly preasent an improved version off his result.

LIMVA 3.2, If the solutien x = O of (2,9) ia exponentislly asymptoti.
cally stable on 8(R), then the function W(:) defined by

(3.3) Wixg) = aup(lx(tyx,)]| explaratan at)|t » 0)

for x,& S(R) haa the following propartiest (1) lxyl < Wixg) < Mixyl;
(14) |W(xy) Nlyg)| < Mixgeyglls (411) Wlxg) < -0'W(xg)y snd, (iv)

w(x(h,xo)) - w(xo) < < xollh for suitable pnsitive constants K,o,0'

(vhere o, M are the conatants involved in .he definition of exponential

asymptotic stability).

Proof: Argue as in (7, vp. 309.311].

We now have

THEOREM 3,4, Suppose thet the solution x a0 of (2.5) is exponentislly

asymptotically stable on S(R). Assume also that either (a) p(x,n) =

£(x) or (b) ®(x,h) 1is (Frechet) differentiable in x and @ x(x‘,h) is

P I

Tonr bl mnd uniformly continucus on 7R} 0,h,]. Then the solution
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% =0 of (.6) ia mponentially asymptotioally stable.

Proofi Let b€ (0,R) and let K = min(L " log R/b, ((R/b).1) frax(L, 1), b))
If 0<h<h then %+ MW(xh) and x+he(x) are in B(R) for || <b
ond [Ix(t, %)l SR for all €30 if |x)l <> (s Ix(t, %)l <
llle™®),

Now, let a(r) - 0 or owp(llo (%) - @ (xC)]||xl <v) acoerding
&8 hypothesis (a) or (b) holds, If hypothesis (a) holds, then | Wle+hp(x, 1)) -
W(xth2(x))| = 0 < Kna(h)||x|. On the other hand, if nypothesis (b) holds,
then |W(x+mo(x,h)) . wJ(‘mr(x))l < Xlo(x,h) - o(x,0)]| < Klo(x,h) - o(0,h) -
®(x,0) + 9(0,0)|| < xn é Ulo (tx,0) - o 1tx,0)l]lx)at < kna(h)l|xl. (Note

that @(0,h) = 9(0,0) = 0,] In other words, we always have
(3.5) | Wit (x, 1)) = W(xrne(x))| < Xina(h)|H|

for |lo| < v, ‘
Let h' be the least positive root uf Ka(h) + Nh] = ¢/2 &nd let
h, be any positive number with h, < min(ﬁ,b',QM/c). If h<h, eand
Il < b, then Wlx+mo(x),h)) - Wixg) < JW(xgrmlxy, 1) - W(xgeh(x,))| +
| Wy *he (%)) = Wx(h;x))] + Wle(hyxg)} - W(xy) < Hx || {Ka(n)+Kih-c} <
-H|x | e/2.
Now let M; =M and B = o/(2). We vhall show by induction that

1F ||xo|| < b/M, then

(3.6) . Izl < Mlx e PHB
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for 11 k. Clearly (3.6) holds for k = O and 8o, we supposs it holds
for 0 <X <n. For any swh ¥, fIxll < Mixgl o™ < Mixgl < v snt oo,
W(xy,y) = Wx) < -Hlxlle/2. Since Wx) < Mixll, Wirey) < Wiy (1-81),
If W(xk) = 0 for any k <n, then w("‘ku) w0 forall £>0 and
(3.6) is satisfied. Otherwise, |lx Il <W(x,,,) <W(x)(1ph) <
w(x,o)(l-ﬁh) a+l < Mllxoll e'ﬂh(ml). Thue, the theorem is established.
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